A Wigner distribution function for finite oscillator systems
نویسنده
چکیده
We define a Wigner distribution function for a one-dimensional finite quantum system, in which the position and momentum operators have a finite (multiplicity-free) spectrum. The distribution function is thus defined on discrete phase-space, i.e. on a finite discrete square grid. These discrete Wigner functions possess a number of properties similar to the Wigner function for a continuous quantum system such as the quantum harmonic oscillator. As an example, we consider the so-called su(2) oscillator model in dimension 2j + 1, which is known to tend to the canonical oscillator when j tends to infinity. In particular, we compare plots of our discrete Wigner functions for the su(2) oscillator with the well known plots of Wigner functions for the canonical quantum oscillator. This comparison supports our approach to discrete Wigner functions.
منابع مشابه
The Wigner distribution function for the su(2) finite oscillator and Dyck paths
Recently, a new definition for a Wigner distribution function for a one-dimensional finite quantum system, in which the position and momentum operators have a finite (multiplicityfree) spectrum, was developed. This distribution function is defined on discrete phase-space (a finite square grid), and can thus be referred to as the Wigner matrix. In the current paper, we compute this Wigner matrix...
متن کاملFinite Dimensional Schwinger Basis, Deformed Symmetries, Wigner Function, and an Algebraic Approach to Quantum Phase
Schwinger’s finite (D) dimensional periodic Hilbert Space representations are studied on the toroidal lattice with specific emphasis on the deformed oscillator subalgebras and the generalized representations of the Wigner function. These subalgebras are shown to be admissible endowed with the non-negative norm of Hilbert space vectors. Hence, they provide the desired canonical basis for the alg...
متن کاملWigner Distribution Function and Entropy of the Damped Harmonic Oscillator within the Theory of Open Quantum Systems
The harmonic oscillator with dissipation is studied within the framework of the Lindblad theory for open quantum systems. By using the Wang-Uhlenbeck method, the Fokker-Planck equation, obtained from the master equation for the density operator, is solved for the Wigner distribution function, subject to either the Gaussian type or the δ-function type of initial conditions. The obtained Wigner f...
متن کاملThe Wigner distribution function for the one-dimensional parabose oscillator
In the beginning of the 1950’s, Wigner introduced a fundamental deformation from the canonical quantum mechanical harmonic oscillator, which is nowadays sometimes called a Wigner quantum oscillator or a parabose oscillator. Also, in quantum mechanics the socalled Wigner distribution is considered to be the closest quantum analogue of the classical probability distribution over the phase space. ...
متن کاملThe Harmonic Oscillator with Dissipation within the Theory of Open Quantum Systems
Time evolution of the expectation values of various dynamical operators of the harmonic oscillator with dissipation is analitically obtained within the framework of the Lindblad theory for open quantum systems. We deduce the density matrix of the damped harmonic oscillator from the solution of the Fokker-Planck equation for the coherent state representation, obtained from the master equation fo...
متن کامل